For the curve y = 2x^2+4x+5, find the co-ordinates of the stationary point and determine whether it is a minimum or maximum point.

Stationary points occurs when the gradient of the graph is equal to 0, i.e. dy/dx = 0. Differentiate y with respect to x to get dy/dx = 4x + 4.So making 4x + 4 = 0 gives x = -1. Substituting this into the original equation for y will give the the y co-ordinate, y = 3.Finding the rate of change of the gradient at the stationary point tells us whether it is minimum or maximum. Doing this gives d2y/dx2 = 4. Since this is greater than 0 the stationary point at (-1,3) is a minimum point.

OB
Answered by Owen B. Maths tutor

5126 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation 2x^2 + xy - y^2 +18 = 0. (1) Find the coordinates of the points where the tangent to the curve is parallel to the x-axis.


By using the substitution, x = 2sin(y) find the exact value of integral sqrt(1/3(4-x^2)) dx with limits 0 and 1.


The curve y = 2x^3 -ax^2 +8x+2 passes through the point B where x = 4. Given that B is a stationary point of the curve, find the value of the constant a.


Use logarithms to solve the equation 3^(2x+1) = 4^100


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning