Find R and a such that 7*cos(x)+3*sin(x)=Rcos(x-a)

Use the cosine trig identity, cos(a-b)=cos(a)cos(b)+sin(a)sin(b) ,to write Rcos(x-a) as R(cos(x)cos(a)+sin(x)sin(a)).Now we can equate the coefficients of the sines and cosins on either side of the equation givingRcos(a)=3 , and Rsin(a)=7Now knowing Pythagoras's theorem we can square these equations and sum themR^2 * cos(a)^2 + R^2 * sin(a)^2 = 3^2 + 7^2 (factor out the R^2)= R^2(cos(a)^2+sin(a)^2)=3^2+7^2 (by Pythagoras cos(a)^2+sin(a)^2=1)so we have R^2=3^2+7^2 so R=sqrt(7^2+3^2).Now we need to find a.We know that tan(a)=sin(a)/cos(a)so using this we can writeRsin(a)/Rcos(a)=tan(a)=3/7 hence a=arctan(3/7) = 0.404...

Answered by Darius Y. Maths tutor

4928 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When performing differentiation in core 3, in what circumstances do I apply the chain, product and quotient rule?


Given that (cos(x)^2 + 4 sin(x)^2)/(1-sin(x)^2) = 7, show that tan(x)^2 = 3/2


Consider the functions f and g where f (x) = 3x − 5 and g (x) = x − 2 . (a) Find the inverse function, f^−1 . (b) Given that g^−1(x) = x + 2 , find (g^−1 o f )(x) . (c) Given also that (f^−1 o g)(x) = (x + 3)/3 , solve (f^−1 o g)(x) = (g^−1 o f)(x)


A curve C has equation y = 3x^4 - 8x^3 - 3. Find dy/dx and d2y/dx2. Verify C has a stationary point at x = 2. Determine the nature of this stationary point, giving a reason for the answer.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences