Find R and a such that 7*cos(x)+3*sin(x)=Rcos(x-a)

Use the cosine trig identity, cos(a-b)=cos(a)cos(b)+sin(a)sin(b) ,to write Rcos(x-a) as R(cos(x)cos(a)+sin(x)sin(a)).Now we can equate the coefficients of the sines and cosins on either side of the equation givingRcos(a)=3 , and Rsin(a)=7Now knowing Pythagoras's theorem we can square these equations and sum themR^2 * cos(a)^2 + R^2 * sin(a)^2 = 3^2 + 7^2 (factor out the R^2)= R^2(cos(a)^2+sin(a)^2)=3^2+7^2 (by Pythagoras cos(a)^2+sin(a)^2=1)so we have R^2=3^2+7^2 so R=sqrt(7^2+3^2).Now we need to find a.We know that tan(a)=sin(a)/cos(a)so using this we can writeRsin(a)/Rcos(a)=tan(a)=3/7 hence a=arctan(3/7) = 0.404...

Answered by Darius Y. Maths tutor

5055 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral between 1 and -2 for (4-x^2-3x^3)


Prove that the equation y = 3x^4 - 8x^3 - 3 has a turning point at x=2


Given that x = 4sin(2y + 6), Find dy/dx in terms of x


At time t = 0, a particle is projected vertically upwards with speed u m s–1 from a point 10 m above the ground. At time T seconds, the particle hits the ground with speed 17.5 m s–1. Find the value of u and T and evaluate the model. (AS mechanics)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences