Define x and y if 2x+y=16 and 4x+6y=24

These are a pair of simultaneous equations.First, we can equate two of the coefficients in each equation (let's choose x) by multiplying each equation respectively.With our first equation, multiply it by 2: 4x+2y=32We can leave the second equation as before: 4x+6y=24
As the signs of the coefficients of x in both equations are positive we subtract the second equation from the first to obtain -4y=8 and so y=-2
We can then substitute this value of y into one of our original equations:2x+y=16, 2x-2=16, 2x=18, x=9
Therefore x=9 and y=-2.
We can check this solution by inputting the values of x and y into our second equation:4x+6y=24, 4(9)+6(-2)=24. This holds and so our values of x and y are correct.

BH
Answered by Bexi H. Maths tutor

3389 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Answer quadratic equation in the simplest surd form/ exact from. 5-2x-x^2=0


For a cuboid, the longest side is two units more than the shortest side, and the middle length side is one unit longer than the shortest side. The total surface area of the cuboid is 52 units². (a) Construct an equation to calculate the surface area.


What is 12x^6 / 7 divided by 4x^2 / 5 ?


What's the difference between the mean, median and mode?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning