Find the location and nature of the turning point of the line y=-x^2+3x+2

Location is placed where the gradient is 0.Differentiate the line to get dy/dx = -2x + 3 and set it equal to zero.2x = 3 therefore x = 1.5.Plug back into the line equation to find the coordinate. y = -(1.5)2 + 3(1.5) +2 = 4.25. Nature of turning point is determined by the second derivative. d2y/dx2 = -2. -2 < 0 therefore turning point is a maxima.
Final answer : location is (1.5,4.25) and it is a maxima.

ER
Answered by Euan R. Maths tutor

4152 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Two numbers add to make 1000. What would they have to be to maximise their product?


Given that x=ln(t) and y=4t^3,a) find an expression for dy/dx, b)and the value of t when d2y/dx2 =0.48. Give your answer to 2 decimal place.


Use the identity for sin(A+B) to find the exact value of sin 75.


What is integration?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning