Find the location and nature of the turning point of the line y=-x^2+3x+2

Location is placed where the gradient is 0.Differentiate the line to get dy/dx = -2x + 3 and set it equal to zero.2x = 3 therefore x = 1.5.Plug back into the line equation to find the coordinate. y = -(1.5)2 + 3(1.5) +2 = 4.25. Nature of turning point is determined by the second derivative. d2y/dx2 = -2. -2 < 0 therefore turning point is a maxima.
Final answer : location is (1.5,4.25) and it is a maxima.

ER
Answered by Euan R. Maths tutor

3633 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C has equation y = 3x^4 - 8x^3 - 3. Find dy/dx and d2y/dx2. Verify C has a stationary point at x = 2. Determine the nature of this stationary point, giving a reason for the answer.


A curve is defined by the parametric equations; x=(t-1)^3, y=3t-8/(t^2), t~=0. Find dy/dx in terms of t.


A particle is in equilibrium under the action of four horizontal forces of magnitudes 5 newtons acting vertically upwards ,8 newtons acting 30 degrees from the horizontal towards the left,P newtons acting vertically downwards and Q newtons acting to right


How do you conduct a two tailed binomial hypothesis test


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences