Find the location and nature of the turning point of the line y=-x^2+3x+2

Location is placed where the gradient is 0.Differentiate the line to get dy/dx = -2x + 3 and set it equal to zero.2x = 3 therefore x = 1.5.Plug back into the line equation to find the coordinate. y = -(1.5)2 + 3(1.5) +2 = 4.25. Nature of turning point is determined by the second derivative. d2y/dx2 = -2. -2 < 0 therefore turning point is a maxima.
Final answer : location is (1.5,4.25) and it is a maxima.

Answered by Euan R. Maths tutor

3391 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

For y=x/(x+4)^0.5, solve dy/dx


Express 3cos(theta) + 5sin(theta) in the form Rcos(theta - alpha) where R and alpha are constants, R>0 and 0<alpha<90. Give the exact value of R and the value of alpha to 2dp.


A and B have coordinates (2,3) and (5,15), respectively. Together they form line l. Find the equation for the line r that goes through C(7,-2) and is perpendicular to l. Give the answer in the format of y=mx+b


Consider a differential equation where dx/dt = -axt. Find an equation for x(t).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences