Find the location and nature of the turning point of the line y=-x^2+3x+2

Location is placed where the gradient is 0.Differentiate the line to get dy/dx = -2x + 3 and set it equal to zero.2x = 3 therefore x = 1.5.Plug back into the line equation to find the coordinate. y = -(1.5)2 + 3(1.5) +2 = 4.25. Nature of turning point is determined by the second derivative. d2y/dx2 = -2. -2 < 0 therefore turning point is a maxima.
Final answer : location is (1.5,4.25) and it is a maxima.

Answered by Euan R. Maths tutor

2975 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=3xe^{3x^2}+2x


Chris claims that, “for any given value of x , the gradient of the curve y=2x^3 +6x^2 - 12x +3 is always greater than the gradient of the curve y=1+60x−6x^2” . Show that Chris is wrong by finding all the values of x for which his claim is not true.


How do you find the turning points of a curve described by the equation y(x)?


Explain the basics of projectile motion


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences