What does differentiation actually mean?

When you differentiate an equation, you're finding the gradient of its graph.<o:p></o:p>

For example, if you differentiate the equation y = xyou get a solution dy/dx = 2x<o:p></o:p>

This means that if you drew a line at a tangent to the curve of x2 at any point, and found the equation of that line in the form y = mx + c (where m is the gradient of the line, and c is the intercept) then the m value of that line would be 2x (with the x value at that point).<o:p></o:p>

This makes sense; when y = 0 , the gradient of the curve is 0, and as x increases, y increases by 2x for every 1 that x increases by. Looking at the graph of x2, we can see that y does get bigger and increases more rapidly as x gets bigger; the slope or "differential" of the curve gets steeper.<o:p></o:p>

But why is this useful?<o:p></o:p>

Because the differential tells us the rate of change of x with y. It tells us how much y is changing as x changes, so it helps us to understand the relationship between x and y.<o:p></o:p>

For example, imagine you're running a chemical reaction, with product "B". You want to make as much "B" as possible from your input "A". You know the relationship between A and B is given by B = 3A- 12A . <o:p></o:p>

Then you can find the differential dB/dA = 6A - 12 , which is positive so long as A is bigger than 2. As the differential is positive, then we know B is increasing, and we can see its increasing faster than A, as for every unit A increases, B increases by 6A-12. <o:p></o:p>

Therefore, you know that you want to make B in big batches, as you get more B out for every unit of A you put in. You also know that you definitely don’t want to make B with less than 2 units of A.<o:p></o:p>

While this is a simple example, differentiation can be used on more complex equations in maths, physics, biology and chemistry to solve all kinds of problems.<o:p></o:p>

Answered by Anna C. Maths tutor

11124 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral between 1 and -2 for (4-x^2-3x^3)


Differentiate y=x^2cos(x)


Find the stationary point of the graph of y = 2x + 5 + 27x^(-2)


The first term of an infinite geometric series is 48. The ratio of the series is 0.6. (a) Find the third term of the series. (b) Find the sum to infinity. (c) The nth term of the series is u_n. Find the value of the sum from n=4 to infinity of u_n.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences