Prove that the difference of the square of two consecutive odd numbers is always a multiple of 8. [OCR GCSE June 2017 Paper 5]

Part 1 of this question asks you to explain why 2n+1 is an odd number, so it is assumed that the student knows this already. The definition of any odd number is 2n+1. Since all consecutive odd numbers are two values apart, the next consecutive odd number is defined as 2n+3 (for all n). The square of the equations are: (2n+1)2=4n2+4n+1 (2n+3)2=4n2+12n+9. Then to find the difference we must subtract one equation from the other. It doesn't matter which way round you do this, the result will be ±(8n-8) = ±8(n-1). This solution shows that no matter what n is, it is being multiplied by 8: the result (the difference of the square of two consecutive odd numbers) is therefore always a multiple of 8.

JJ
Answered by Jon J. Maths tutor

9997 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the difference between the areas of these 2 shapes to 2 decimal places. Rectangle (width 4cm length 2.5cm) Circle (diameter 2.4) use pi = 3.14


Solve simultaneous equations x + y = 3 and -3x + 5y = 7


(x+6) and (x+5) are the length and width, respectively, of a rectangle with area 20. Calculate the width of the rectangle.


A cuboid has sides such that the longest side is two units more than the shortest side, and the middle length side is one unit longer than the shortest side. The total surface area of the cuboid is 52 units². Calculate the length of the shortest side.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning