A curve has the equation x^2 +2x(y)^2 + y =4 . Find the expression dy/dx in terms of x and y [6]

Integrate each term in terms of x, then integrate each term in terms of y Make sure you state in what form you are integrating. Remember if you are integration in terms of y, the x values are constants and vice versa 2x + 2(y^2) + (2x*2y)dy/dx + 1dy/dx = 0 2x + 2(y^2) + (4xy +1) dy/dx = 0 [4](4xy +1) dy/dx = -(2x + 2(y^2) )Therefore dy/dx = -(2x + 2(y^2) ) / (4xy +1) [2]

Answered by Lavana C. Maths tutor

3198 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integral of xe^-x dx


The second and fourth term of a geometric series is 100 and 225 respectively. Find the common ratio and first term of the series. Round your answer to 2 d.p if necessary


Write (3 + 2√5)/(7 + 3√5) in the form a + b√5


What is the "chain rule"?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences