A curve has the equation x^2 +2x(y)^2 + y =4 . Find the expression dy/dx in terms of x and y [6]

Integrate each term in terms of x, then integrate each term in terms of y Make sure you state in what form you are integrating. Remember if you are integration in terms of y, the x values are constants and vice versa 2x + 2(y^2) + (2x*2y)dy/dx + 1dy/dx = 0 2x + 2(y^2) + (4xy +1) dy/dx = 0 [4](4xy +1) dy/dx = -(2x + 2(y^2) )Therefore dy/dx = -(2x + 2(y^2) ) / (4xy +1) [2]

Answered by Lavana C. Maths tutor

3241 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How could I sketch a graph of y=2x^3-3x^2?


Find the gradient of 4(8x+2)^4 at X coordinate 2


Differentiate the function f(x) = (x^2 - 1)^3


The quadratic equation (k+1)x^2 + (5k - 3)x + 3k = 0 has equal roots. Find the possible values of k


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences