A curve has equation y = x^2 - 7x. P is a point on the curve, and the tangent to the curve at P has gradient 1. Work out the coordinates of P.

The gradient of the tangent at P (=1) will be equal to the gradient of the curve at point P (=1). The gradient at a point on a curve is given by dy/dx (the differential). First, differentiate the equation of the curve, and equate the differential to 1. Solve for x by rearranging the equation. Finally, plug this value of x into the equation for y, and solve for y. dy/dy = 2x - 7 = 1, 2x = 8, x = 4. Therefore, y = (4)^2 - 7*(4) = -12Thus, the coordinates of P are (4,-12)

ST
Answered by Serene T. Further Mathematics tutor

2742 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Find the coordinates of any stationary points of the curve y(x)=x^3-3x^2+3x+2


How do you use derivatives to categorise stationary points?


Point A lies on the curve y=3x^2+5x+2. The x-coordinate of A is 2. Find the equation of the tangent to the curve at the point A


If the equation of a curve is x^2 + 9x + 8 = y, then differentiate it.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning