A curve has equation y = x^2 - 7x. P is a point on the curve, and the tangent to the curve at P has gradient 1. Work out the coordinates of P.

The gradient of the tangent at P (=1) will be equal to the gradient of the curve at point P (=1). The gradient at a point on a curve is given by dy/dx (the differential). First, differentiate the equation of the curve, and equate the differential to 1. Solve for x by rearranging the equation. Finally, plug this value of x into the equation for y, and solve for y. dy/dy = 2x - 7 = 1, 2x = 8, x = 4. Therefore, y = (4)^2 - 7*(4) = -12Thus, the coordinates of P are (4,-12)

Related Further Mathematics GCSE answers

All answers ▸

How can you divide an algebraic expression by another algebraic expression?


The circle c has equation x^2+ y ^2=1 . The line l has gradient 3 and intercepts the y axis at the point (0, 1). c and l intersect at two points. Find the co-ordinates of these points.


What is differentiation used for?


Lengths of two sides of the triangle and the angle between them are known. Find the length of the third side and the area of the triangle.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences