Prove that 1/(tanx) + tanx = 1/sinxcosx

The key here is to realise that tanx = sinx/cosx. If we write out the left hand side of the equation in terms of sine and cosine we get: cosx/sinx + sinx/cosx These two fractions can be put over a common denominator of sinxcosx to give: (cos2x + sin2x)/sinxcosx If we then use the well-known identity cos2x + sin2x = 1, we see that the above expression is equivalent to 1/sinxcosx, which is the expression we were required to find.

HM
Answered by Hannah M. Maths tutor

21118 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If x=-2,1,2 and the y intercept is y=-8 for y=ax^3+bx^2+cx+d, what is a, b, c and d


Solve $\color{orange}{a}x^2 - \color{blue}{b}x + \color{green}{c} = 0$


How does integration by parts work?


Express 2(x-1)/(x^2-2x-3) - 1/(x-3) as a fraction in its simplest form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences