Integrate ln(x) with respect to x.

Here we can use integration by parts. Notice that ln(x) can be written as ln(x)1, so we can integrate 1 and differentiate ln(x).
Then using the formula int(u
v') dx = uv - int(u'v) dx, we find that the integral of ln(x) is xln(x) - int(1/x * x) dx = xln(x) - int(1) dx = xln(x) - x + c, where c is a constant of integration.

TW
Answered by Tim W. Further Mathematics tutor

2902 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I integrate arctan(x) using integration by parts?


You have three keys in your pocket which you extract in a random way to unlock a lock. Assume that exactly one key opens the door when you pick it out of your pocket. Find the expectation value of the number of times you need to pick out a key to unlock.


I don't know what I am doing when I solve differential equations using the integrating factor and why does this give us the solutions it does?


prove by induction that, f(n) = 2^(3n+1) + 3(5^(2n+1)) is divisible by 17 for all n>0.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences