Integrate ln(x) with respect to x.

Here we can use integration by parts. Notice that ln(x) can be written as ln(x)1, so we can integrate 1 and differentiate ln(x).
Then using the formula int(u
v') dx = uv - int(u'v) dx, we find that the integral of ln(x) is xln(x) - int(1/x * x) dx = xln(x) - int(1) dx = xln(x) - x + c, where c is a constant of integration.

TW
Answered by Tim W. Further Mathematics tutor

3097 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove by induction that 6^n + 4 is divisible by 5 for all integers n >= 1


Find arsinh(x) in terms of x


Sketch the curve y= ((3x+2)(x-3))/((x-2)(x+1)) and find values of y for which y>=3


differentiate arsinh(cosx))


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences