Integrate ln(x) with respect to x.

Here we can use integration by parts. Notice that ln(x) can be written as ln(x)1, so we can integrate 1 and differentiate ln(x).
Then using the formula int(u
v') dx = uv - int(u'v) dx, we find that the integral of ln(x) is xln(x) - int(1/x * x) dx = xln(x) - int(1) dx = xln(x) - x + c, where c is a constant of integration.

Related Further Mathematics A Level answers

All answers ▸

Using de Moivre's theorem demonstrate that "sin6x+sin2x(16(sinx)^4-16(sinx)^2+3)"


How do you prove the formula for the sum of n terms of an arithmetic progression?


Using graphs, show how the Taylor expansion can be used to approximate a trigonometric function.


How do you find the determinant of a matrix?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences