Draw the I-V curves of both an ideal resistor and a filament bulb. Explain the key features of both.

Plot: I-V curve of an ideal resistor is a straight line with a positive gradient passing through (0,0)The I-V curve of an ideal resistor is a straight line because ideal resistors strictly obey Ohm's law (V = IR). The gradient is constant because the resistance does not change. The line should pass through the origin because no current can flow with zero applied potential difference.Plot: The I-V curve of a filament bulb is a sub-linear line passing through (0,0)The I-V curve of a filament bulb has a decreasing gradient as voltage increases. This is because as more voltage (or current) is applied, the temperature of the filament increases. The atoms making up the filament will therefore increase in energy and an increase in their movement. The rate of collisions between the electrons and the lattice will increase. The resistance of the filament therefore increases. The line should still pass through the origin because no current can flow with zero applied voltage.

Answered by Jacob A. Physics tutor

7471 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

In still air an aircraft flies at 200 m/s . The aircraft is heading due north in still air when it flies into a steady wind of 50 m/s blowing from the west. Calculate the magnitude and direction of the resultant velocity?


Explain how and why the diffraction pattern of electrons passing through a slit depends on their momentum.


If an alpha particle (Z = 2) of kinetic energy 7 MeV is incident on a gold nucleus (Z = 79), what is its closest distance of approach?


What is the difference between an elastic and inelastic collision


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences