The equation of line A is (x)^2 + 11x + 12 = y - 4, while the equation of line B is x - 6 = y + 2. Find the co-ordinate(s) of the point at which lines A and B intersect.

While this question may seem complicated, this question is simply asking you to solve the equations of these two lines as simultaneous equations. Line A: x2 + 11x + 12 = y - 4 --> x2 + 11x + 16 = y; Line B: x - 6 = y + 2 --> x - 8 = y. At the co-ordinate(s) at which lines A and B intersect, x2 + 11x + 16 = x - 8. If you bring all the x's in the equation above to the same side: x2 + 10x + 24 = 0, which can also be written as: (x + 6)(x + 4) = 0. Solving this equation for x: x + 6 = 0 (x = - 6) AND x + 4 = 0 (x = - 4)When x = - 6, y = (- 6) - 8 = - 14 AND when x = - 4, y = (- 4) - 8 = - 12... Therefore lines A and B cross at two points: (- 6, -14) and (-4, -12)

Answered by Ann A. Maths tutor

2758 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Prove that the square of an odd number is always one more than a multiple of 4


How can I find x and y?


How do I revise for my Maths GCSE exam?


The graph of y = x^2 + 4x - 3 (Graph A) is translated by the vector (3 | 2), find the equation of the new graph (Graph B)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences