A curve has the equation y = (x^2 - 5)e^(x^2). Find the x-coordinates of the stationary points of the curve.

This requires the chain rule and the product rule to be used to differentiate the function. The substitution u = x2 can be used to make this easier. Using this, du/dx = 2x and y = (u-5)eu. Using the product rule, dy/dx = eu + (u-5)eu = eu(u-4). Substituting u = x2 back in, dy/du = (x2-4)ex^2. Now the chain rule can be used to find dy/dx: dy/dx = (dy/du)(du/dx) = 2x(x2-4)ex^2. The stationary points are when dy/dy = 0. ex^2 is always > 0, so either 2x = 0 (x=0) or x2-4 = 0, giving x = -2 and x = 2, so the stationary points are at x = -2, 0 and 2.

Answered by Oliver J. Maths tutor

3476 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A block of mass 5kg is at rest on a smooth horizontal table, and connected to blocks of 3kg and 4kg which are hanging by strings via pulleys on either end of the table. Find the acceleration of the system and the tension in each string.


How do I prove that an irrational number is indeed irrational?


The functions f and g are defined by f : x → 2x + ln 2, g : x → e^(2x). Find the composite function gf, sketch its graph and find its range.


Line AB, with equation: 3x + 2y - 1 = 0, intersects line CD, with equation 4x - 6y -10 = 0. Find the point, P, where the two lines intersect.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences