A curve has the equation, 6x^2 +3xy−y^2 +6=0 and passes through the point A (-5, 10). Find the equation of the normal to the curve at A.

Use implicit differentiation on original equation-
12x + 3x(dy/dx) + 3y - 2y(dy/dx) = 0
dy/dx= -12x -3y/(3x-2y) at A, x= -5 and y= 10 therefore, dy/dx=-6/7

To find the normal of the curve, use the negative reciprocal of the gradient calculated for the gradient of the normal, 7/6. Now we can form the equation,
y= mx + c
y= 7/6.x + c

Input y and x values in the question to calculate c;
c= 10-7/6(-5)= 95/6
So, y= 7/6x + 95/6

Answered by Chantal G. Maths tutor

5458 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Maths


Solve the equation 3sin^2(x) + sin(x) + 8 = 9cos^2(x), -180<X<180. Then find smallest positive solution of 3sin^2(2O-30) + sin(2O-30) + 8 = 9cos^2(2O-30).


How do you find the turning point of a parabola using its equation? using its equation?


y=e^2x-11e^x+24 Find the stationary point, nature of the stationary point, the x-intercepts and the y-intercept (calculator allowed)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences