Calculate the rate of change of d(t )=2/(3t), t ≠ 0, when t=6.

When a question asks for rate of change, this means you need to differentiate the equation. First you need to put the equation into differentiable a form ie, with the no variables on the denominator: f(t) = 2/3t^-1Then you can differentiate by multiplying the coefficient by the power and then reducing the power by one: f'(t)= -2/3t^-2We can put this back to a standard form to make it easier to work with: f'(t) = -2/(3t^2)Substitute t = 6 in and we get: f-(t) = -2/(3*36) = -2/108 = -1/54

LI
Answered by Lucy I. Maths tutor

2473 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

y=x^3-3x^2+2x+5 a)Write down the coordinates of P the point where the curve crosses the x-axis. b)Determine the equation of the tangent to the curve at P. c)Find the coordinates of Q, the point where this tangent meets the curve again.


Find the x-coordinates of the stationary points on the graph with equation f(x)= x^3 + 3x^2 - 24x


Find ∫((x^2−2)(x^2+2)/x^2) dx, x≠0


show y=3x-5 is tangent to x^2 + y^2 +2x -4y - 5 = 0 and the point where they touch


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning