Solve x^2+8x-5=0 using completing the square

by completing the square we write the equation as (x+b/2)^2-b/2^2+c, in this case b=8 (the coefficient of x) and c=5 so we have (x+4)^2-16-5=0, which equals (x+4)^2-21=0. Now by rearranging we get (x+4)^2=21, which goes to x+4=+or-sqrt(21). Therefore x=sgrt21 -4 or x=-sqrt21 -4

LH
Answered by Lucy H. Further Mathematics tutor

2467 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove that the sum of squares of the first n natural numbers is n/6(n+1)(2n+1)


Find the four roots of the equation z^4 = + 8(sqrt(3) + i), in the form z = r*e^(i*theta). Draw the roots on an argand diagram.


Explain the process of using de Moivre's Theorem to find a trigonometric identity. For example, express tan(3x) in terms of sin(x) and cos(x).


Solve the following complex equation: '(a + b)(2 + i) = b + 1 + (10 + 2a)i' to find values for 'a' and 'b'


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning