Solve x^2+8x-5=0 using completing the square

by completing the square we write the equation as (x+b/2)^2-b/2^2+c, in this case b=8 (the coefficient of x) and c=5 so we have (x+4)^2-16-5=0, which equals (x+4)^2-21=0. Now by rearranging we get (x+4)^2=21, which goes to x+4=+or-sqrt(21). Therefore x=sgrt21 -4 or x=-sqrt21 -4

LH
Answered by Lucy H. Further Mathematics tutor

2064 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the root of the complex 3+4i


Integrate f(x) = 1/(1-x^2)


Prove by mathematical induction that, for all non-negative integers n, 11^(2n) + 25^n + 22 is divisible by 24


a) Find the general solution to the differential equation: f(x)=y''-12y'-13y=8. b) Given that when x=0, y=0 and y'=1, find the particular solution to f(x).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences