Evaluate the integral ∫2x√(x^2 +1) dx

The first step is deciding on the method of integration. For this integral it makes the most sense to use substitution.Let u = x2 + 1Differentiate w.r.t x => du/dx = 2xRearrange for dx=> du/2x = dx Substitute into the Original integral ∫2x√(u) du/2x= ∫√(u) du= (2/3) u2/3 + c= (2/3 )(x2 + 1)2/3 + c

Answered by Sam C. Maths tutor

7517 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the roots of the equation y=x^2-8x+5 by completing the square.


proof for the derivative of sin(x) is cos(x) (5 marks)


The equation of a circle is x^2+y^2-6x-4y+4=0. i) Find the radius and centre of the circle. ii) Find the coordinates of the points of intersection with the line y=x+2


Given that y = (sin(6x))(sec(2x) ), find dy/dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences