Evaluate the integral ∫2x√(x^2 +1) dx

The first step is deciding on the method of integration. For this integral it makes the most sense to use substitution.Let u = x2 + 1Differentiate w.r.t x => du/dx = 2xRearrange for dx=> du/2x = dx Substitute into the Original integral ∫2x√(u) du/2x= ∫√(u) du= (2/3) u2/3 + c= (2/3 )(x2 + 1)2/3 + c

Answered by Sam C. Maths tutor

7048 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove algebraically that n^3+3n^2+2n+1 is odd for all integers n


How do you integrate ln(x) with respect to x?


d/dx ( sin x) ^3


express (1+4(root7)) / (5+2(root7)) as a+b(root7), where a and b are integers


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences