Evaluate the integral ∫2x√(x^2 +1) dx

The first step is deciding on the method of integration. For this integral it makes the most sense to use substitution.Let u = x2 + 1Differentiate w.r.t x => du/dx = 2xRearrange for dx=> du/2x = dx Substitute into the Original integral ∫2x√(u) du/2x= ∫√(u) du= (2/3) u2/3 + c= (2/3 )(x2 + 1)2/3 + c

Answered by Sam C. Maths tutor

7279 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate tan (x) with respect to x.


Given that x=ln(t) and y=4t^3,a) find an expression for dy/dx, b)and the value of t when d2y/dx2 =0.48. Give your answer to 2 decimal place.


By expressing cos(2x) in terms of cos(x) find the exact value of the integral of cos(2x)/cos^2(x) between the bounds pi/4 and pi/3.


In the triangle ABC, AB = 16 cm, AC = 13 cm, angle ABC = 50 and angle BCA= x Find the two possible values for x, giving your answers to one decimal place.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences