Evaluate the integral ∫2x√(x^2 +1) dx

The first step is deciding on the method of integration. For this integral it makes the most sense to use substitution.Let u = x2 + 1Differentiate w.r.t x => du/dx = 2xRearrange for dx=> du/2x = dx Substitute into the Original integral ∫2x√(u) du/2x= ∫√(u) du= (2/3) u2/3 + c= (2/3 )(x2 + 1)2/3 + c

SC
Answered by Sam C. Maths tutor

7857 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How does a hypothesis test work?


Given that x = cot y, show that dy/dx = -1/(1+x^2)


Find the first differential with respect to x of y=tan(x)


Use the chain rule to show that, if y = sec(x), then dy/dx = sec(x)tan(x).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences