Point K(8,-5) lies on the circle x^2 +y^2 - 12x - 6y - 23. find the equation of the tangent at K.

First, find the centre of the circle. Since we know the equation of the circle, we know that the centre (-g,-f) comes from the part of the equation -12x-6y, where -12=2g and -6=2f. Therefore, to get the centre coordinate, we divide both numbers by -2 to get centre (6,3).
The, we can calculate the gradient of the radius between the centre and point K using the formula (y2-y1)/(x2-x1). this gives us the gradient of (-5-3)/(8-6)=-8/2= -4. Since the gradient of the radius is -4, we know that the gradient of the tangent at this point is the negative inverse of this, so 1/4.
Using this gradient and the point K(8,-5), we can get the equation of the line using the formula y-b=m(x-a) y+5=1/4(x-8) Then multiply out the brackets and rearrange for yy+5=1/4x - 2y= 1/4x - 7 And that is the final answer

CM
Answered by Catriona M. Maths tutor

2122 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

Work out the angle between the two tangents of the curve y = sin(x) at y = 0 and y = 1


Solve log_2(3x + 7) = 3 + log_2(x – 1), x > 1.


Show that (𝑥 − 1) is a factor of 𝑓(𝑥)=2𝑥^3 + 𝑥^2 − 8𝑥+ 5. Hence fully factorise 𝑓(𝑥) fully.


If f(x) = 1/(6x^2), where x not equal to 0, find the rate of change when x=4.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences