Point K(8,-5) lies on the circle x^2 +y^2 - 12x - 6y - 23. find the equation of the tangent at K.

First, find the centre of the circle. Since we know the equation of the circle, we know that the centre (-g,-f) comes from the part of the equation -12x-6y, where -12=2g and -6=2f. Therefore, to get the centre coordinate, we divide both numbers by -2 to get centre (6,3).
The, we can calculate the gradient of the radius between the centre and point K using the formula (y2-y1)/(x2-x1). this gives us the gradient of (-5-3)/(8-6)=-8/2= -4. Since the gradient of the radius is -4, we know that the gradient of the tangent at this point is the negative inverse of this, so 1/4.
Using this gradient and the point K(8,-5), we can get the equation of the line using the formula y-b=m(x-a) y+5=1/4(x-8) Then multiply out the brackets and rearrange for yy+5=1/4x - 2y= 1/4x - 7 And that is the final answer

CM
Answered by Catriona M. Maths tutor

2443 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

Calculate the rate of change of y(t) = 1/(4t), when t = 8


Differentiate the equation: 3x^2 + 4x + 3


y=x^3-3x^2+2x+5 a)Write down the coordinates of P the point where the curve crosses the x-axis. b)Determine the equation of the tangent to the curve at P. c)Find the coordinates of Q, the point where this tangent meets the curve again.


Find an equation for the straight line AB , giving your answer in the form px+qy=r, where p, q and r are integers. Given that A has co-ordinates (-2,4) and B has co-ordinates (8,-6)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning