Give the general solution of the second order ODE dy2/d2x - 4dy/dx + 3 = 0

Solving the ansatz equation x^2 - 4x + 3 = gives 2 equal roots where x = 3 and x = 1The general solution therefore is y = Ae^3x + Be^x where A and B are arbitrary constants

MN
Answered by Martha N. Further Mathematics tutor

2735 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove by mathematical induction that, for all non-negative integers n, 11^(2n) + 25^n + 22 is divisible by 24


(FP1) Given k = q + 3i and z = w^2 - 8w* - 18q^2 i, and if w is purely imaginary, show that there is only one possible non-zero value of z


How to determine the rank of a matrix?


Find the GS to the following 2nd ODE: d^2y/dx^2 + 3(dy/dx) + 2 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning