Give the general solution of the second order ODE dy2/d2x - 4dy/dx + 3 = 0

Solving the ansatz equation x^2 - 4x + 3 = gives 2 equal roots where x = 3 and x = 1The general solution therefore is y = Ae^3x + Be^x where A and B are arbitrary constants

MN
Answered by Martha N. Further Mathematics tutor

2779 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Let E be an ellipse with equation (x/3)^2 + (y/4)^2 = 1. Find the equation of the tangent to E at the point P where x = √3 and y > 0, in the form ax + by = c, where a, b and c are rational.


Given that x = i is a solution of 2x^3 + 3x^2 = -2x + -3, find all the possible solutions


A=[5k,3k-1;-3,k+1] where k is a real constant. Given that A is singular, find all the possible values of k.


Solve x^2+8x-5=0 using completing the square


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning