Give the general solution of the second order ODE dy2/d2x - 4dy/dx + 3 = 0

Solving the ansatz equation x^2 - 4x + 3 = gives 2 equal roots where x = 3 and x = 1The general solution therefore is y = Ae^3x + Be^x where A and B are arbitrary constants

MN
Answered by Martha N. Further Mathematics tutor

2847 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I use proof by induction?


The finite region bounded by the x-axis, the curve with equation y = 2e^2x , the y-axis and the line x = 1 is rotated through one complete revolution about the x-axis to form a uniform solid. Show that the volume of the solid is 2π(e^2 – 1)


solve 3sinh^2(2x) + 11sinh(2x) = 4 for x, giving your answer(s) in terms of the natural log.


How do I solve x^2 + x - 6 > 0 ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning