The curve C has the equation: 16y^3 +9x^2y-54x=0, find the x coordinates of the points on C where dy/dx = 0

C: 16y3 + 9x2y -54x = 0 d/dx(16y3) + d/dx(9x2y) + d/dx(-54x) = d/dx(0).............=>48y2.dy/dx + 9x2.dy/dx + y.18x - 54 = 0 dy/dx(48y2+9x2) = 54 - 18xy...........................................=> dy/dx = (54-18xy)/(48y2+9x2) = 0 # dy/dx=0 at turning points therefore: 54-18xy = 0 => y = 3/x # substitute y=3/x into C:=>16.(3/x)3 + 9x2(3/x) -54x = 0 = 432/x3 + 27x -54x = 0 = 432/x3 -27x = 0= 432/x3 = 27x = 432 = 27x4 = 6 = x4 ................................................=> x = 2, -2

EP
Answered by Elliot P. Maths tutor

8668 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate 5x + 3(square root of x)


Solving 2tan(x) - 3sin(x) = 0 for -pi ≤ x < pi


Edexcel C1 2015 Q10. A curve with equation y = f (x) passes through the point (4, 9). Given that f′(x)=3x^(1/2)-9/(4x^(1/2))+2. Find f(x), giving each term in its simplest form.


Find a local minimum of the function f(x) = x^3 - 2x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning