The perimeter of a right-angled triangle is 72 cm. The lengths of its sides are in the ratio 3 : 4 : 5. Work out the area of the triangle.

So, working out the different side lengths of the triangle is going to help find the area at the end. We split the ratio up into 3s and show them as a proportion of the whole perimeter. For example, one side length is 3/12 of 72, the second is 4/12 of 72 ans the third is 5/12 of 72, meaning the lengths of the sides are 18cm, 24cm and 30cm. Now, to find the area, we can construct this triangle since we are told it is a right angles triangle with the 30cm line being the hypoteneuse (the diagonal), and the 18cm and 24cm lines the base and height of the triangle. So using the formula, Area = (base x height)/2, the area is 216cm^2

RG
Answered by Roberto G. Maths tutor

9510 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

66 people went on a day trip and each took part in one activity: skating, bowling or painting. 43 were female. 4 out of the 10 that went skating were male. 20 people did painting. 10 males went bowling. How many females did painting?


If 2x + y = 13 and 3x - y = 12, what are the values for x and y?


Question: What proportion of the clock is the area covered when the time is 12:10? (Here the question should indicate the time stated and shade in the proportion of the clock to be computed.)


A GCSE is graded out of 140 marks. 1/5 of these marks were given for coursework. The rest were divided between two reading and listening tests, with the marks split in the ratio 3:4 respectively. How many marks were given for the reading test?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning