Use induction to prove that for all positive integers n, f(n)=2^(3n+1)+3x5^(2n+1) is divisible by 17.

Prove the basis to be true. Let n=1 and this gives f(1)=16+375=391 which is divisible by 17. Now assume that if we let n=k f(k) is divisible by 17. If we now let n=k+1 and prove f(k+1) is divisible by 17 we have proven the statement. Using f(k+1) won't give an answer, but if we subtract f(k) from f(k+1) we can rearrange the formula to get f(k+1)=8xf(k)+17x3x5^(2k+1). If the statement is true for n=k then we have shown it's true for n=k+1 and it is also true for n=1. Therefore it is true for all positive integers of n.

MH
Answered by Marijn H. Further Mathematics tutor

2945 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The ODE mx'' + cx' + kx = 0 is used to model a damped mass-spring system, where m is the mass, c is the damping constant and k is the spring constant. Describe and explain the behaviour of the system for the cases: (a) c^2>4mk; (b) c^2=4mk; (c) c^2<4mk.


A block of mass 50kg resting on a rough surface with a coefficient of friction equal to 1/3. Find the maximum angle at which the surface can be inclined to the horizontal without the block slipping. Give your answer to 3 significant figures


What are polar coordinates?


If 0<x<1, find the following sum: S = 1+2*x + 3*x^2 + 4*x^3 + ...


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning