A ball of mass m is thrown from the ground at the speed u=10ms^-1 at an angle of 30 degrees. Find the max height, the total flight time and the max distance it travels?Assume g=10ms^-1 and there is no air friction

First let’s split the problem into 2 parts: Vertical(y direction) and Horizontal(x direction.Vertical: u_y = 10 sin (30) = 5ms^-1
As for the ball to stop at max height and the fall down, all the kinetic energy has to be converted into potential energy: KE=PE1/2 mu_y^2 = mgh_max so h_max= v^2/2g = 5/4 m
The time of flight can be found by considering the time required to reach the max height and double it as we know that the time for the ball to reach max_height will the same as the time for the ball to fall from the max_height to the ground.
0 = u_y - g
t, the minus comes from the fact that the acceleration acts in the opposite way of the vertical velocity
t=u_y/g = 0.5s so T_total = 2*t = 1s
Horizontal: u_x = 10 cos(30) = 5 * 3^1/2 ms^-1
Max distance can be found once we had found the total flight time as we know that the ball must travel 1s in the x direction having a velocity of u_x
So D_max= u_x * T_total = 5 * 3^1/2 m

MV
Answered by Mihai V. Physics tutor

2101 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A cart starts at rest and moves freely down a ramp without friction or air resistance and descends 8 meters vertically, what is its speed at the bottom?


Why are electron volts used instead of Joules in Quantum Phenomena and how do you convert between the two?


Describe and explain the photoelectric effect in terms of photons interacting with the surface of a metal.


Given that a light ray enters a glass prism at angle of 50 degrees from the normal and is refracted to an angle of 30 degrees from the normal, calculate the speed of light in glass.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning