A ball of mass m is thrown from the ground at the speed u=10ms^-1 at an angle of 30 degrees. Find the max height, the total flight time and the max distance it travels?Assume g=10ms^-1 and there is no air friction

First let’s split the problem into 2 parts: Vertical(y direction) and Horizontal(x direction.Vertical: u_y = 10 sin (30) = 5ms^-1
As for the ball to stop at max height and the fall down, all the kinetic energy has to be converted into potential energy: KE=PE1/2 mu_y^2 = mgh_max so h_max= v^2/2g = 5/4 m
The time of flight can be found by considering the time required to reach the max height and double it as we know that the time for the ball to reach max_height will the same as the time for the ball to fall from the max_height to the ground.
0 = u_y - g
t, the minus comes from the fact that the acceleration acts in the opposite way of the vertical velocity
t=u_y/g = 0.5s so T_total = 2*t = 1s
Horizontal: u_x = 10 cos(30) = 5 * 3^1/2 ms^-1
Max distance can be found once we had found the total flight time as we know that the ball must travel 1s in the x direction having a velocity of u_x
So D_max= u_x * T_total = 5 * 3^1/2 m

MV
Answered by Mihai V. Physics tutor

2202 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Bernard says that a mass executing uniform circular motion is not accelerating as it's speed is not changing. Which parts of his statement are correct and which are false. For those which are false state why they are and give the correct version.


Draw the I-V curves of both an ideal resistor and a filament bulb. Explain the key features of both.


Hydrogen has a single proton and a single electron. Find the electric potential at a distance of 0.50 * 10^(-10) (m) from the proton.


What is the total capacitance of a circuit containing a 3microfarad capacitor and a 2microfarad capacitor in series.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning