A ball of mass m is thrown from the ground at the speed u=10ms^-1 at an angle of 30 degrees. Find the max height, the total flight time and the max distance it travels?Assume g=10ms^-1 and there is no air friction

First let’s split the problem into 2 parts: Vertical(y direction) and Horizontal(x direction.Vertical: u_y = 10 sin (30) = 5ms^-1
As for the ball to stop at max height and the fall down, all the kinetic energy has to be converted into potential energy: KE=PE1/2 mu_y^2 = mgh_max so h_max= v^2/2g = 5/4 m
The time of flight can be found by considering the time required to reach the max height and double it as we know that the time for the ball to reach max_height will the same as the time for the ball to fall from the max_height to the ground.
0 = u_y - g
t, the minus comes from the fact that the acceleration acts in the opposite way of the vertical velocity
t=u_y/g = 0.5s so T_total = 2*t = 1s
Horizontal: u_x = 10 cos(30) = 5 * 3^1/2 ms^-1
Max distance can be found once we had found the total flight time as we know that the ball must travel 1s in the x direction having a velocity of u_x
So D_max= u_x * T_total = 5 * 3^1/2 m

Answered by Mihai V. Physics tutor

1487 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A sigma0 particle with mass 1193 MeV/c^2 decays into a lambda0 particle with mass 1116 MeV/c^2 a photon. Find the energy and momentum of the photon, assuming that the kinetic energy of the lambda0 particle is negligible.


What is the force on a moving charged particle in a magnetic field, and why is no work done by this force when it accelerates the particle?


What would happen to n and Emax when  a) the intensity is reduced to 1/2 I but the wavelength λ is unchanged? b) the wavelength λ is reduced but the intensity is unchanged?


Why does a body engaged in uniform circular motion do no work?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences