Differentiate: ln((e^x+1)/e^x-1))

Chain rule: First resolve the log differential, then resolve the fraction integration either by knowing the formula for it or by writing (e^x+1)/(e^x-1) as (e^x+1)(e^x-1)^(-1) and applying chain rule againLet’s assume that the formula for the fraction differential is not known
dy/dx= (e^x-1)/(e^x+1) * (e^x*(e^x-1)^(-1)-e^x*(e*x+1)(e^x-1)^(-2))
After the differential has been resolved further simplification can be obtained by putting the same denominator in the large brackets and then realising that some of it can be simplified with the first fraction of the equation
dy/dx= (e^x-1)/(e^x+1) * (e^2x-2e^x-e^2x)/(e^x-1)^2)dy/dx= (-2e^x)/(e^2x-1)

Answered by Mihai V. Maths tutor

2701 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the solutions of the equation: sin(x - 15degrees) = 0.5 between 0<= x <= 180


Find the gradient of the line Y = X^3 + X + 6 when X = 4


At time t = 0 a particle leaves the origin and moves along the x-axis. At time t seconds, the velocity of P is v m/s in the positive x direction, where v=4t^2–13t+2. How far does it travel between the times t1 and t2 at which it is at rest?


Use integration by parts to find the integral of sin(x)*exp(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences