Differentiate: ln((e^x+1)/e^x-1))

Chain rule: First resolve the log differential, then resolve the fraction integration either by knowing the formula for it or by writing (e^x+1)/(e^x-1) as (e^x+1)(e^x-1)^(-1) and applying chain rule againLet’s assume that the formula for the fraction differential is not known
dy/dx= (e^x-1)/(e^x+1) * (e^x*(e^x-1)^(-1)-e^x*(e*x+1)(e^x-1)^(-2))
After the differential has been resolved further simplification can be obtained by putting the same denominator in the large brackets and then realising that some of it can be simplified with the first fraction of the equation
dy/dx= (e^x-1)/(e^x+1) * (e^2x-2e^x-e^2x)/(e^x-1)^2)dy/dx= (-2e^x)/(e^2x-1)

Answered by Mihai V. Maths tutor

2910 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

let line L have the equation 4y -3x =10, and line M passes through the points (5,-1) and (-1,8), find out if they are perpendicular, parallel, or neither


Differentiate sin(x)cos(x) with respect to x?


What is differentiation and how is it used?


Integrate 3 sin(x) + cos(2x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences