Differentiate: ln((e^x+1)/e^x-1))

Chain rule: First resolve the log differential, then resolve the fraction integration either by knowing the formula for it or by writing (e^x+1)/(e^x-1) as (e^x+1)(e^x-1)^(-1) and applying chain rule againLet’s assume that the formula for the fraction differential is not known
dy/dx= (e^x-1)/(e^x+1) * (e^x*(e^x-1)^(-1)-e^x*(e*x+1)(e^x-1)^(-2))
After the differential has been resolved further simplification can be obtained by putting the same denominator in the large brackets and then realising that some of it can be simplified with the first fraction of the equation
dy/dx= (e^x-1)/(e^x+1) * (e^2x-2e^x-e^2x)/(e^x-1)^2)dy/dx= (-2e^x)/(e^2x-1)

MV
Answered by Mihai V. Maths tutor

3698 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How will you simplify (3 xsquare root of 2) to the square?


How can I find the area under the graph of y = f(x) between x = a and x = b?


Find the set of values of x for which x(x-4) > 12


Differentiate: sin(x) + 2x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning