Differentiate: y=x^x

First take log’s each side as it would turn our complicated function into something differentiable by chain rule.
ln y = x*ln x
Then differentiate y with respect to x:
d(ln y)/dx = ln x + 1
1/y * dy/dx = ln x +1
dy/dx = y(ln x +1)
As we know what y is the final result is dy/dx= x^x(ln x +1)

MV
Answered by Mihai V. Further Mathematics tutor

2517 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I know when I should be using the Poisson distribution?


Show that the square of any odd integer is of the form (8k+1)


The set of midpoints of the parallel chords of an ellipse with gradient, constant 'm', lie on a straight line: find its equation; equation of ellipse: x^2 + 4y^2 = 4


How would go about finding the set of values of x for which x+4 > 4 / (x+1)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning