Differentiate: y=x^x

First take log’s each side as it would turn our complicated function into something differentiable by chain rule.
ln y = x*ln x
Then differentiate y with respect to x:
d(ln y)/dx = ln x + 1
1/y * dy/dx = ln x +1
dy/dx = y(ln x +1)
As we know what y is the final result is dy/dx= x^x(ln x +1)

MV
Answered by Mihai V. Further Mathematics tutor

2539 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Express f(x) = ln(x+1) as an infinite series in ascending powers of x up to the 3rd power of x


Find the eigenvalues and eigenvectors of the matrix M , where M{2,2} = (1/2 2/3 ; 1/2 1/3) Hence express M in the form PDP^-1 where D is a diagonal matrix.


By forming and solving a suitable quadratic equation, find the solutions of the equation: 3cos(2A)-5cos(A)+2=0


The quadratic equation x^2-6x+14=0 has roots alpha and beta. a) Write down the value of alpha+beta and the value of alpha*beta. b) Find a quadratic equation, with integer coefficients which has roots alpha/beta and beta/alpha.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning