Differentiate: y=x^x

First take log’s each side as it would turn our complicated function into something differentiable by chain rule.
ln y = x*ln x
Then differentiate y with respect to x:
d(ln y)/dx = ln x + 1
1/y * dy/dx = ln x +1
dy/dx = y(ln x +1)
As we know what y is the final result is dy/dx= x^x(ln x +1)

MV
Answered by Mihai V. Further Mathematics tutor

2582 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove by induction that (n^3)-n is divisible by 3 for all integers n>0 (typical fp1 problem)


Find the nth roots of unity.


A curve has polar equation r = 1 + cos THETA for 0 <= THETA <= 2Pi. Find the area of the region enclosed by the curve


Find the eigenvalues and corresponding eigenvectors of the following matrix: A = [[6, -3], [4, -1]]. Hence represent the matrix in diagonal form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning