Phosphorus(III) chloride molecules are pyramidal with a bond angle less than 109.5°. Explain why a phosphorus(III) chloride molecule has this shape and bond angle.

Phosphorous (III) Chloride consists of one phosphorous atom covalently linked to 3 individual chlorine atoms. Phosphorous is found in group 5 of the periodic table, hence it has 5 outer shell electrons, in which 3 of these participate in covalent bonds with the 3 chlorine atoms. The other 2 electrons are a lone pair of electrons. PCl3 has a pyramidal shape due to electrons on phosphorous arranged for minimal repulsion/maximal separation hence reducing the repulsion between them. Due to the presence of the lone pair the bond angle is further reduced to 107, as lone pair-bond pair repulsions are stronger than those of bond pair-bond pair repulsions.

TD
Answered by Tutor171831 D. Chemistry tutor

8592 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

In the reaction (SO₂ + 2H₂S → 3S + 2H₂O), 44.3g of SO₂ are mixed with 44.3g of H₂S. Calculate the maximum mass of sulfur that could be formed.


How can crude oil be used as a source of hydrocarbons?


Explain the resistance to bromination of benzene in comparison to phenol.


Explain what is meant by the term 'rate of reaction'?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences