Phosphorus(III) chloride molecules are pyramidal with a bond angle less than 109.5°. Explain why a phosphorus(III) chloride molecule has this shape and bond angle.

Phosphorous (III) Chloride consists of one phosphorous atom covalently linked to 3 individual chlorine atoms. Phosphorous is found in group 5 of the periodic table, hence it has 5 outer shell electrons, in which 3 of these participate in covalent bonds with the 3 chlorine atoms. The other 2 electrons are a lone pair of electrons. PCl3 has a pyramidal shape due to electrons on phosphorous arranged for minimal repulsion/maximal separation hence reducing the repulsion between them. Due to the presence of the lone pair the bond angle is further reduced to 107, as lone pair-bond pair repulsions are stronger than those of bond pair-bond pair repulsions.

Answered by Tutor171831 D. Chemistry tutor

6780 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

State 2 features of a system that is in dynamic equilibrium.


What is entropy?


How would you work out the mols of a substance?


What happens to the physical properties(solubility/boiling/melting point) as chain length increases, and as functional groups are added onto the chemical compound?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences