How do I rewrite 2 cos x + 4 sin x as one sin function?

This question makes use of the sin addition formula. It may be stated as sin (A + B) = sinA cosB + sinB cosA . We want to rewrite 2 cosx + 4 sinx in the form R sin (x + a), so firstly work out what R sin(x +a) is, expanded. By using the formula above, we get R sin(x + a) = Rinxcosa + Rsinacosx or (R cos a) sinx + (R sin a) cosx, where the parts in the brackets are the constants.
We can therefore equate the constants to the constants given in the original expression, i.e. 4 and 2, so we get that R cos a = 4 and R sin a = 2. Making use of two more trig formulae, we can work out what R and a are. For example. cos^2 x + sin^2 x = 1, meaning R = sqrt (R cos^2 a + R sin^2 a). To work out a, use tan a = sin a / cos a.

Answered by Sara S. Maths tutor

3541 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Expand and simplify (3 + 4*root5)(3 - 2*root5)


Let f(x) = x * sin(2x). Find the area beneath the graph of y = f(x), bounded by the x-axis, the y-axis and the line x = π/2.


A curve C has equation y=(2x-3)^5. Find the equation of the normal of this curve at point P with y coordinate -32.


How do I find the solution of the simultaneous equations x+3y=7 and 5x+2y=8


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences