How do I rewrite 2 cos x + 4 sin x as one sin function?

This question makes use of the sin addition formula. It may be stated as sin (A + B) = sinA cosB + sinB cosA . We want to rewrite 2 cosx + 4 sinx in the form R sin (x + a), so firstly work out what R sin(x +a) is, expanded. By using the formula above, we get R sin(x + a) = Rinxcosa + Rsinacosx or (R cos a) sinx + (R sin a) cosx, where the parts in the brackets are the constants.
We can therefore equate the constants to the constants given in the original expression, i.e. 4 and 2, so we get that R cos a = 4 and R sin a = 2. Making use of two more trig formulae, we can work out what R and a are. For example. cos^2 x + sin^2 x = 1, meaning R = sqrt (R cos^2 a + R sin^2 a). To work out a, use tan a = sin a / cos a.

SS
Answered by Sara S. Maths tutor

4420 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the coordinates of the stationary points y=x^4-8x^2+3


Given that y= 5x^2 + 2x , find dy/dx


Functions: If f(x)=3x^2 - 4 and g(x) = x + 3, 1) Evaluate f(3), 2) Find the inverse of f(x) (f^-1(x)), 3)Find fg(x).


Use the quotient rule to differentiate: ln(3x)/(e^4x) with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning