Given that 9 sin^2y-2 sin y cos y=8 show that (tany - 4)(tany + 2)= 0

This question requires us to make use of the trigonometric identities tan(y)=sin(y)/cos(y) and sin^2y + cos^2y = 1 which are given in the formula sheet of the exam. Since we know that sin(y)/cos(y) can be substituted for tan(y), our objective is to create some form of sin(y)/cos(y) in the first equation to enable us to get to tan(y). Therefore, we divide the first equation by cos^2y. This gets us9sin^2y/cos^2y - 2sinycosy/cos^2y = 8/cos^2ySince sin(y)/cos(y)=tan(y), this means that sin^2(y)/cos^2(y) = tan^2(y). Therefore, we can simplify the above equation to 9tan^2y-2tany=8/cos^2y. Now we have the equation in tan(y) form but we need to get rid of the cos^2y denominator and further simplify the equation. Using the sin^2y+cos^2y=1 identity, we can replace 8 by 8(cos^2y+sin^2y). We can simplify 8(cos^2y+sin^2y)/cos^2y by cancelling out the top cos^2y and converting the sin^2y/cos^2y part into tan^2y. This gets us 9tan^2y-2tany=8+8tan^2y. We must remember to keep the the first 8 as we must multiply the 1 we simplified the cos^2y/cos^2y into by 8 as 8 is outside of the brackets. From here, we bring 8+8tan^2y to the left hand side by subtracting them both from the LHS. From doing this we get tan^2y-2tany-8=0 which we can factorise to get the final equation (tany-4)(tany+2)=0

Answered by Swetha G. Maths tutor

3930 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find integers A and B, such that (5x +4)/((2-x)(1+3x)) = A/(2-x) + B/(1+3x)


A block of mass 5kg is on a rough slope inclined at an angle of 30 degrees to the horizontal, it is at the point of sliding down the slope. Calculate the coefficient of friction between the block and the slope.


Use the substitution u=3+(x+4)^1/2 to find the integral of 1/(3+(x+4)^1/2) dx between 0 and 5.


What is the centre and radius of the circle with the equation x(x-2)+y(y+6)+4=0 ?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences