Answers>Maths>IB>Article

Differentiation from first principles

Differentiaiton from principles requires the use of the following formula which is provided in the formula booklet:

f'(x) = limh->0 ((f(x+h) - f(x))/(h))

Consider a function:

f(x) = 6x2

Clearly we know that the function differentiates to:

f'(x) = 12x 

by using the process of multiplying the coefficient by the power and then reducing the power by 1.

Using first principles however we must consider the formula mentioned previously.

f'(x) = limh->0 ((f(x+h) - f(x))/(h))

By computing the function for x+h and x we get:

f'(x) = limh->0 (6(x+h)2 - 6x2)/(h))

f'(x) = limh->0 (6(x2+2xh+h2) - 6x2)/(h))

f'(x) = limh->0 (6x2+12xh+6h2) - 6x2)/(h))

f'(x) = limh->0 (12xh+6h2)/(h))

We now cancel the h from above and below to get:

f'(x) = limh->0 12x+6h

Now consider the limit as h-> 0, clearly 12x remains unaffected but 6h will become 0 and is hence removed. Hence we are left with:

f'(x) = 12x

Which we know to be true from the trivial methods of differentiation considered earlier. 

HS
Answered by Hanumanth Srikar K. Maths tutor

3598 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Differentiate, from first principles, y=x^2


How can we calculate the maximum and minimum points of a function?


How do radians work? Why can't we just keep working with degrees in school?


Two functions, y1 & y2, are given by y1=x^2+16x+4; y2=2(3x+2). Find analytically the volume of the solid created by revolving the area between the two curves by 2pi radians around the x-axis. N.B. y2>y1 on the interval between the points of intersection.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences