How would I go about finding the coordinates minimum point on the curve eg y = e^(x) - 9x -5?

In order to find the coordinates of the minimum point of any curve y = f(x), you must differentiate the equation of the curve with respect to x and then equate it to zero.In this case, the differential of the curve is: dy/dx = e^(x) - 9
Equating this to zero you find that e^x = 9.
Therefore x = ln(9)
Substituting this back int the original equation for the curve to find y: y= e^(ln(9)) - 9ln(9) - 5 , noticing that the e^ ln cancel out.
Thus, x = ln(9) and y = 9-5 - 9ln(9) = 4 - 9ln(9)

Answered by Theo R. Maths tutor

2932 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate: y = sin(2x).


If x is a real number, what are the solutions to the quadratic: 4*x^2- 4*x+1 = 0


The line l1 has equation 2x + 3y = 26 The line l2 passes through the origin O and is perpendicular to l1 (a) Find an equation for the line l2


The region R is bounded by the curve y=sqrt(x)+5/sqrt(x) the x-axis and the lines x = 3, x = 4. Find the volume generated when R is rotated through four right-angles about the x-axis. Give your answer correct to the nearest integer.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences