Find the turning points of the curve (x^3)/3 + x^2 -8x + 5

Step one, we need to assess what the question is asking us to do, in this case, find the turning points.The turning points on the graph are where the gradient is equal to zero, so in order to find the turning points, we need to se the gradient of the graph to zero.Step 2 therefore is to find the gradient, we do this by differentiation. Remember, power down in front, one off the powerd/dx x3/3 + x2 - 8x + 5 = x2 + 2x -8Step 3 is to set the gradient we have found equal to zero and solve for xx2 + 2x -8 = 0in this case, we can factorise, what could you use if you couldn't factorise? (quadratic formula)(x - 2)(x + 4) = 0therefore, x = 2 or x = -4 have we answered the question? Not yet, we need to find the corresponding y values to our x values. Step 4, We plug our x - values back into our equationfor x = 2,y = 23/3 + 22 - 82 + 5 = -4.33for x = -4y = (-4)3/3 +(-4)2 - 8(-4) + 5 = 31.67
Finally, state the answer:turning points: (2, -4.33) and (-4, 31.67)


Answered by Ellie M. Maths tutor

2742 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the angle between two lines in three dimensional vector space given two points on line 1 and the vector equation of line 2


What is the determinant of a 2 by 2 matrix?


The population of a town is 20000 at the start of the year 2018. A population model predicts this population will grow by 2% each year. (a) Find the estimated population at the start of 2022.


f(x)= 2x^3 -7x^2 + 2x +3. Given that (x-3) is a factor of f(x), express f(x) in a fully factorised form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences