Write a balanced equation for the oxidation of Iron from the 2+ oxidation state to the 3+ oxidation state using the manganate ion.

Firstly, we need to write a balanced equation for the oxidation of Fe2+ to Fe3+ . We know that when something is oxidised, it is losing electrons, making the half equation: Fe2+ ---> Fe3+ + e- (we can check this by ensuring the charges on each side of the equation are equal). If iron is being oxidised, the manganate ion must be being reduced and so we write a half equation for the reduction of Mn(VII) to Mn(II): MnO4- --->   Mn2+. We must now balance the equation, first for number of atoms of each element by adding water and hydrogen ions: MnO4- + 8H+ --->   Mn2+ + 4H2O. We then balance for charge by adding electrons: MnO4- + 8H+ + 5e- --->   Mn2+ + 4H2O. Finally, we must combine the two half equations by multiplying everything in the equation for oxidation of iron by 5 so that, once combined, the number of electrons on each side of the equation cancel each other out. This leave us with the final equation: 5Fe2+ + MnO4- + 8H+ --->  5Fe3+ + Mn2+ + 4H2O.

PM
Answered by Paige M. Chemistry tutor

19529 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Give the electron configuration of fluorine


Without a catalyst, an alkene will react with bromine while benzene will not. Why is this?


How do you calculate the units for Kc?


What is the definition of a H-Bond?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning