Write a balanced equation for the oxidation of Iron from the 2+ oxidation state to the 3+ oxidation state using the manganate ion.

Firstly, we need to write a balanced equation for the oxidation of Fe2+ to Fe3+ . We know that when something is oxidised, it is losing electrons, making the half equation: Fe2+ ---> Fe3+ + e- (we can check this by ensuring the charges on each side of the equation are equal). If iron is being oxidised, the manganate ion must be being reduced and so we write a half equation for the reduction of Mn(VII) to Mn(II): MnO4- --->   Mn2+. We must now balance the equation, first for number of atoms of each element by adding water and hydrogen ions: MnO4- + 8H+ --->   Mn2+ + 4H2O. We then balance for charge by adding electrons: MnO4- + 8H+ + 5e- --->   Mn2+ + 4H2O. Finally, we must combine the two half equations by multiplying everything in the equation for oxidation of iron by 5 so that, once combined, the number of electrons on each side of the equation cancel each other out. This leave us with the final equation: 5Fe2+ + MnO4- + 8H+ --->  5Fe3+ + Mn2+ + 4H2O.

Answered by Paige M. Chemistry tutor

15270 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Palladium acts as a heterogeneous catalyst in the reaction between an alkene with hydrogen by providing an alternative reaction route. Describe the stages of this reaction route. (3 marks)


How would you synthesise an carboxylic acid just from a primary haloalkane like bromoethane?


State why it is initially unexpected for alkenes to undergo electrophilic addition with bromine. Explain why this reaction does indeed occur.


Define and give an example of Le Chatalier's Principle of Chemical Equilibrium.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences