A linear sequence begins: a + 2b, a + 6b, a + 10b, ..., ... Given that the 2nd term has a value of 8 and the 5th term has a value of 44, calculate the values for a and b

This is a linear sequence which we can see increasing by 4b with every consecutive term.

Given the values of the first 3 terms, we can see that the 4th and 5th terms must be a + 14b and a + 18b respectively.Since we know that the 2nd term must be equal to 8 and the 5th term must be equal to 44, we can form a pair of simultaneous equations: a + 6b = 8 and a + 18b = 44

Subtracting the first equation from the second one we get 12b = 36, which rearranges to get b = 3.

Substituting this value for b back into the first equation we get a + 18 = 8, which rearranges to get a = -10.

We now have both of the values we were asked to find in the question, a = -10 and b = 3.

AF
Answered by Alex F. Maths tutor

7515 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

These are the selling prices of 5 houses in 2007: £145 000, £170 000, £215 000, £90 000, £180 000. Work out the mean selling price.


Two dice are thrown at the same time. What is the probability that the sum of the numbers on the dice is greater than 7?


Complete the square on the equation (x^2)-4x-3


If a cookie recipe requires 280g of flour for 12 cookies how much flour is needed to make only 9 cookies


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning