A linear sequence begins: a + 2b, a + 6b, a + 10b, ..., ... Given that the 2nd term has a value of 8 and the 5th term has a value of 44, calculate the values for a and b

This is a linear sequence which we can see increasing by 4b with every consecutive term.

Given the values of the first 3 terms, we can see that the 4th and 5th terms must be a + 14b and a + 18b respectively.Since we know that the 2nd term must be equal to 8 and the 5th term must be equal to 44, we can form a pair of simultaneous equations: a + 6b = 8 and a + 18b = 44

Subtracting the first equation from the second one we get 12b = 36, which rearranges to get b = 3.

Substituting this value for b back into the first equation we get a + 18 = 8, which rearranges to get a = -10.

We now have both of the values we were asked to find in the question, a = -10 and b = 3.

Answered by Alex F. Maths tutor

6611 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How would I find the nth term of this sequence? 15, 18, 21, 24, ...


Simplify fully (3x^2-8x-3)/(2x^2-6x)


What is the gradient of the curve 3x^3 + 7x at the point x=3?


On a packet of brown rice it says 'When 60g of rice is cooked, it will weigh 145g.' If Katy has 100g of brown rice, how much will it weigh when cooked?'


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences