How do I solve the following simultaneous equations? y = 2x -3 and 2x + 3y = 23

Equation 1 : y = 2x -3 Equation 2: 2x +3y = 23To solve these equations you use a method called substitution The information from the 1st equation is used by the 2nd one Sub in the formula for y like so: 2x + 3 (2x -3) = 23Expand the brackets/multiply out2x + 6x - 9 = 23Bring all the algebraic terms on one side 8x = 32Divide by 8 x=4 Then substitute this value into equation 1 to find out what y equals y = 2(4) - 3 = 8-3 = 5y = 5

Answered by Anika K. Maths tutor

3772 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The graph of y = x^2 – 1 is translated 3 units to the left to give graph A.The equation of graphA can be written in the form y=x^2 +bx+c Work out the values of b and c.


Solve 6x^2-13x=5


Solve (4x10^-3)x(9x10^4)


A football pitch has a length of the xm. Its width is 25m shorter than the length. The area of the pitch is 2200m2. Show that x2 - 25x - 2200 =0 and work out the length of the football pitch.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences