What is the angle between the position vectors a and b, where a = (6i - j + 3k) and b = (-4i + 2j + 10k)?

cos(AOB) = a.b/(|a| x |b|)

a.b = (6i - j + 3k).(-4i + 2j + 10k)

      = (6 x -4) + (-1 x 2) + (3 x 10)

      = -24 + -2 + 30

      = 4

(|a|)^2 = 6^2 + (-1)^2 + 3^2

          = 36 + 1 + 9 = 46

          -> |a| = 46^(1/2)

(|b|)^2 = (-4)^2 + 2^2 + 10^2

          = 16 + 4 + 100 = 120

          -> |b| = 120^(1/2) = 2 x 30^(1/2)

cos(AOB) = a.b/(|a| x |b|)

               = 4/(46^(1/2) x 2 x 30^(1/2))

               = 4/(4 x 345^(1/2))

               = 1/(345^(1/2))

AOB = cos^-1 (1/(345^(1/)))

        = 86.9 degrees(3 significant figures)

Answered by David H. Maths tutor

5455 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the function f(x) = (x^2 - 1)^3


The curve y = 2x^3 -ax^2 +8x+2 passes through the point B where x = 4. Given that B is a stationary point of the curve, find the value of the constant a.


a curve has an equation: y = x^2 - 2x - 24x^0.5 x>0 find dy/dx and d^2y/dx^2


How do I differentiate a trigonometric function for something that is not just a single variable (e.g. d/dx (sin(3x))?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences