What is the angle between the position vectors a and b, where a = (6i - j + 3k) and b = (-4i + 2j + 10k)?

cos(AOB) = a.b/(|a| x |b|)

a.b = (6i - j + 3k).(-4i + 2j + 10k)

      = (6 x -4) + (-1 x 2) + (3 x 10)

      = -24 + -2 + 30

      = 4

(|a|)^2 = 6^2 + (-1)^2 + 3^2

          = 36 + 1 + 9 = 46

          -> |a| = 46^(1/2)

(|b|)^2 = (-4)^2 + 2^2 + 10^2

          = 16 + 4 + 100 = 120

          -> |b| = 120^(1/2) = 2 x 30^(1/2)

cos(AOB) = a.b/(|a| x |b|)

               = 4/(46^(1/2) x 2 x 30^(1/2))

               = 4/(4 x 345^(1/2))

               = 1/(345^(1/2))

AOB = cos^-1 (1/(345^(1/)))

        = 86.9 degrees(3 significant figures)

Answered by David H. Maths tutor

5510 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate xcos(x) with respect to x


A curve has the equation y = 4x^3 . Differentiate with respect to y.


How can I calculate the maximum value of the compound angle formulae Rsin(x+a) and Rcos(x+a)?


How do I simplify (1 / [1 + cos(x) ] ) + (1 / [1 - cos(x) ] )?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences