Explain the Chain Rule

The chain rule is used to differentiate composite functions, ie "a function of a function". In this case we have an outer function and an inner function. For example

Differentiate f(g(x)). Here f is the outer function and g the inner. 

The derivative of this function is found by differentiating the outer function and evaluating its derivative at the point g(x) and then multiplying by the derivative of g(x):

f(g(x))' = f'(g(x))g'(x)

Answered by Alex C. Maths tutor

3683 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Maths C1 2017 1. Find INT{2x^(5) + 1/4x^(3) -5}


How can the y=sin(x) graph be manipulated?


Let f(x) = 3x^4 - 8x^3 - 3. Find the x- values of the stationary points of this function.


Find the second derivate d^2y/dx^2 when y = x^6 + sqrt(x).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences