Explain the Chain Rule

The chain rule is used to differentiate composite functions, ie "a function of a function". In this case we have an outer function and an inner function. For example

Differentiate f(g(x)). Here f is the outer function and g the inner. 

The derivative of this function is found by differentiating the outer function and evaluating its derivative at the point g(x) and then multiplying by the derivative of g(x):

f(g(x))' = f'(g(x))g'(x)

Answered by Alex C. Maths tutor

3772 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

On the same diagram, sketch the graphs of: y = |5x -2| and y = |2x| and hence solve the equation |5x - 2| = |2x|


The curve C has equation y = x^3 - 3x^2 - 9x + 14. Find the co-ordinates and nature of each of the stationery points of C.


Evaluate the following integral: (x^4 - x^2 +2)/(x^2(x-1)) dx


What is the integral of (6x^2 + 2/x^2 + 5) with respect to x?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences