Show that the square of any odd number is an odd number

We can talk about any integer (or whole number) with the variable n. n could be any integer, 2, 3 or 100 or 5 billion and 1!If n is any integer, then what numbers could be written as 2n? These are the even numbers. How do I know they would all be even? (They can be divided by 2)How could I generalise all the odd numbers in the same way? (2n+1)We are interested in looking at the squares of odd numbers, so (2n+1)2 or (2n+1)(2n+1)= 4n2+ 4n + 1 We want to know if this is an odd number. We already know that an odd number can be written as an even number plus 1 and we can therefore rearrange: 4n2+ 4n + 1 = 2(2n2+ 2n) + 1, 2(2n2+ 2n) has to be even as whatever is in the brackets is then multiplied by 2. Therefore 2(2n2+ 2n) + 1 has to be odd for any integer n!

Answered by Alice T. Maths tutor

3298 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

8^(3/4)*2^(x) = 16^(4/5). Work out the exact value of x.


Solve the simultaneous equations, 2x-3y=14 and 3x+4y=4


solve 2x^(2) + 9x +10 = 15


Let f(x)= 5x-10 and h(x)= -5/x. A) Find fh(x). B) Find hf(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences