A curve with equation y = f(x) passes through the point (4,25). Given that f'(x) = (3/8)*x^2 - 10x^(-1/2) + 1, find f(x).

f'(x) = (3/8)x^2 - 10x^(-1/2) + 1Each term must be integrated (increase the power by 1 and divide by the new power), remembering to include + c.f(x) = (3/8)(x/3)^3 - 10*(2x)^(1/2) + x + cf(x) = (1/8)x^3 - 20 x^(1/2) + x + c = ySubstitute the given values for x and y into the equation, rearrange to find c.25 = (1/8)4^3 - 20 4^(1/2) + 4 + c c = 53Therefore f(x) = (1/8)*x^3 - 20x^(1/2) + x + 53

Answered by Oliver W. Maths tutor

7749 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the values of x such that: (log3(81)+log2(32))/(log2(x)) = log2(x) (5 marks)


Find where the curve 2x^2 + xy + y^2 = 14 has stationary points


Find the exact solution to: ln(x) + ln(7) = ln(21)


Co-ordinate Geometry A-level: The equation of a circle is x^2+y^2+6x-2y-10=0, find the centre and radius of the circle, the co-ordinates of point(s) where y=2x-3 meets the circle and hence state what we can deduce about the relationship between them.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences