Given that 2cos(x+50)°=sin(x+40)° show tan x° = tan 40°/3

The formulae for the sum the sine and cosine of two angles are: 2(cos x°cos 50°- sin x°sin 50°)= sin x°cos 40°+cos x°sin 40°cos 50°= sin 40°sin 50° = cos 40° Therefore, 2 cos x°sin 40°- 2 sin x°cos 40° = sin x°cos 40°+cos x°sin 40°dividing by cos x gives:2 sin 40° - 2 tan x°cos 40° = tan x°cos 40° + sin 40°dividing by cos 40° gives:2 tan 40° - 2 tan x° = tan x° + tan 40°tan 40° = 3 tan x°1/3 tan 40° = tan x°#QED

PT
Answered by Prashasti T. Maths tutor

7135 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve for -pi < x < pi: tanx = 4cotx + 3


Find the coordinates of the centre C and the length of the diameter of a circle with the equation (x-2)^2 + (y+5)^2 = 25


Write the complex number Z=1/2+sqrt(3)/2j both as a function involving cos & sin, and as a function involving an exponential.


A circle C has centre (-5, 12) and passes through the point (0,0) Find the second point where the line y=x intersects the circle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences