Given that 2cos(x+50)°=sin(x+40)° show tan x° = tan 40°/3

The formulae for the sum the sine and cosine of two angles are: 2(cos x°cos 50°- sin x°sin 50°)= sin x°cos 40°+cos x°sin 40°cos 50°= sin 40°sin 50° = cos 40° Therefore, 2 cos x°sin 40°- 2 sin x°cos 40° = sin x°cos 40°+cos x°sin 40°dividing by cos x gives:2 sin 40° - 2 tan x°cos 40° = tan x°cos 40° + sin 40°dividing by cos 40° gives:2 tan 40° - 2 tan x° = tan x° + tan 40°tan 40° = 3 tan x°1/3 tan 40° = tan x°#QED

PT
Answered by Prashasti T. Maths tutor

6950 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = 3x(^2) + 6x(^1/3) + (2x(^3) - 7)/(3(sqrt(x))) when x > 0 find dy/dx


Why do we need to differentiate?


Show that the funtion (x-3)(x^2+3x+1) has two stationary points and give the co-ordinates of these points


Express 9^3x + 1 in the form3^y ?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences