Integrate sin^2(x) with respect to x

use trigonometric identities i.e. Cos(2x) = Cos2(x) - Sin2(x) (a) Cos2(x) + Sin2(x) = 1 (b)Therefore: Cos2(x) = 1 - Sin2(x) (c)Combining (a) and (c) we achieve Cos(2x) = 1 - 2 Sin2(x)Rearranging we achieveSin2(x) = (1/2) - (1/2) Cos(2x)Therefore integrating with respect to x∫Sin2(x) dx = ∫ (1/2) - (1/2)Cos(2x) dx= (x/2) - (1/4)Sin(2x) + C

Answered by Oscar L. Maths tutor

3330 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary point of the curve y = -2x^2 + 4x.


Find the equation of the tangent line to the graph of y=2x^4-7x^3+x^2+3x when x=5


Show that x^2 +6x+ 11 can be written as (x+p)^2 +q


What's the proof for the quadratic formula?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences