A ball is thrown vertically downwards at a speed of 10ms^-1 from a height of 10m. Upon hitting the floor 10% of the energy is dissipated through waste heat. What is the heighest point the ball reaches before it comes to rest? Take g=10ms^-2

The first step is to calculate the initial energy of the system. at the moment of throwing. Energy is comprised of both potential (given by Mgh) and kinetic(given by 0.5Mv^2), and so the initial energy is : Mg(10) +1/2 * M * (10)^2 = 150M, where M is mass of the ball and h is its height.As energy is conserved, the energy at the instant of bouncing is the same, so we multiply by 0.9 to get the energy at the start of the next cycle. Again, due to conservation of energy, the highest point is given by the instant when this energy is all converted into potential energy, giving: MgH = 0.9 * 150M , which gives H = 13.5m. Important to note here is that this is the highest point in any of the subsequent cycles, as the total energy in the system can never exceed this value, and as 13.5m > 10m, the answer is 13.5m

Answered by Russell J. Physics tutor

1308 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A Uranium-(238,92) nucleus decays into a Thorium-234 nucleus by the emission of an alpha-particle. Given Thorium has a chemical symbol Th build a nuclear equation.


A student heats a bar of chocolate in the microwave for one minute. When they remove the bar they observe that there are patches of melted chocolate with unmelted chocolate between them. Suggest the mechanism of how this happens.


A projectile is fired at an angle of 30 degrees from the horizontal, it reaches a maximum height of 12m above the ground before coming to rest 600m from its initial starting point at the same level. What is the initial speed of the projectile?


Explain why gas bubbles rise faster through magma as they start to expand. (3)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences