A ship is 180 kilometres away from a port P on a bearing of 63 degrees. Another ship is 245 kilometres away from port P on a bearing of 146 degrees. Calculate the distance between the two ships.

While this problem could be done simply by inputting the appropriate numbers into the correct formula, it is good practice to draw a diagram of the problem in order to minimise any silly mistakes that may be made. Upon drawing the diagram you should be able to see that the placement of the two ships(which we can call A and B) and the port make a triangle and that the information you are given enables you to use the cosine rule to calculate the distance between the two ships.
We can calculate the angle between ship A and ship B is (146-63), since the bearing of ship B is taken from port. The distance between the two ships can be assigned to the variable c.The values are substituted into the cosine rule to result in : c^2 = (180^2) + (245^2) -(2180245*cosC)This is simplified to: c^2 = 81676.12Therefore c = 285.8 kilometres.

Answered by Saeed G. Maths tutor

6715 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are 300 students at a school who have been asked to attend assembly. 1/10 students are sat on chairs, 85% of students are sat on the floor, the rest do not attend assembly. How many students did not attend assembly?


How can you factorise quadratics with a an x^2 coefficient higher than one?


Write 3a - a x 4a + 2a in its simplest form.


Given a right-angled triangle with an angle of 35 degrees and an Opposite side of 12cm, calculate the length of the hypotenuse to 3 significant figures.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences