The difference between two positive numbers is 50. The second number is 50 % smaller than the first one. What are the two numbers?

Let's call the numbers we are looking for a and b. From the question: a-b = 50 and b is 50% of a, which means that b = (50/100)a=0.5 a. Substituting this form of b in the first equation, we obtain: a-0.5a= 50 which is 0.5 a = 50. This leads to: a=50/0.5=50/(1/2)=50*2=100. Once a is known, b can be easily obtained from a-b=50 which becomes: b= a-50=100-50=50.Therefore the two numbers are: 100 and 50.

AC
Answered by Andreea C. Maths tutor

4398 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

solve this equation: 4(x-5)=x+7


Find the coordinates of the point of intersection of the lines 2x + 3y = 12 and y = 7 - 3x.


Solve 2x+y=6, 3x+2y=3 for x and y.


Rectangle A has a length of 3y cm and a width of 2x cm. Rectangle B has a length of (y + 4)cm and a width of (x + 6)cm. Rectangle A has a perimeter of 94cm and Rectangle B has a perimeter of 56cm. Solve x and y and calculate the areas of each rectangle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning