Let f(x)=xln(x)-x. Find f'(x). Hence or otherwise, evaluate the integral of ln(x^3) between 1 and e.

We use the product rule with u=x and v=ln(x) (so u'=1 andv'=1/x) to differentiate xln(x) to ln(x)+1, and -x just differentiates to -1, hence we have. f'(x)=ln(x).
Now note that ln(x^3)=3ln(x) using properties of logarithms.Hence, we are just integrating 3ln(x). We know, from the first part, that ln(x) will integrate to xln(x)-x, and we require 3 lots of this, so 3ln(x) integrates to 3xln(x)-3x. Plugging in 1 and e into this formula, we get that the integral of ln(x^3) between 1 and e is (3eln(e)-3e)-(3ln(1)-3) = (3e-3e)-(30-3) = -3 (since ln(e)=1 and ln(1)=0).

MJ
Answered by Matthew J. Maths tutor

3511 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Fnd ∫x^2e^x


Find the values of A between and including 0 and 360 degrees for tan(2A) = 3tan(A)


How do you express partial fractions of a proper fraction that has a denominator of (x-2)(x+1)^2


Q15 from Senior Mathematical Challenge 2018: A square is inscribed in a circle of radius 1. An isosceles triangle is inscribed in the square. What is the ratio of the area of this triangle to the area of the shaded region? (Requires Diagram))


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning