Let f(x)=xln(x)-x. Find f'(x). Hence or otherwise, evaluate the integral of ln(x^3) between 1 and e.

We use the product rule with u=x and v=ln(x) (so u'=1 andv'=1/x) to differentiate xln(x) to ln(x)+1, and -x just differentiates to -1, hence we have. f'(x)=ln(x).
Now note that ln(x^3)=3ln(x) using properties of logarithms.Hence, we are just integrating 3ln(x). We know, from the first part, that ln(x) will integrate to xln(x)-x, and we require 3 lots of this, so 3ln(x) integrates to 3xln(x)-3x. Plugging in 1 and e into this formula, we get that the integral of ln(x^3) between 1 and e is (3eln(e)-3e)-(3ln(1)-3) = (3e-3e)-(30-3) = -3 (since ln(e)=1 and ln(1)=0).

MJ
Answered by Matthew J. Maths tutor

2920 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate ln(x)?


Solve the equation: 5^(2x+1) = 7, giving your answer correct to four decimal places.


What is Bayes' rule and why is it useful?


June 2008 C1 Paper Differentiation Question


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences