Prove that the square of an odd number is always 1 more than a multiple of 4

This is a nice little question off the 2018 Edexcel Higher Maths paper! When we heard the word 'prove' in a question at this level, automatically we should be thinking about using algebra to help us out! Firstly, we need to remember that even numbers and odd numbers can be written in the form 2n and 2n+1 respectively, with n being any integer. This means that if we want to write out the form of "the square of an odd number", we could write it out as (2n+1)2 Expanding the brackets, this is written as 4n2+4n+1. Looking back at the question, we are trying to prove that our number is "always 1 more than a multiple of 4". Looking at our formula, we can factorise the first two terms as follows: 4n2+4n+1 = 4(n2 +n) +1, which gives us a number that is one more than a multiple of 4

TR
Answered by Thomas R. Maths tutor

3585 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations 5x+2y=11 and x-y=-2.


Solve the simultaneous equations: x^2 + y^2 = 9 and x + y = 2


A cylinder has a radius of 4 cm and volume of 800 cm3. A similar cylinder with the same height has a volume of 200 cm3. Find the radius of the smaller cylinder.


Frank, Mary and Seth shared some sweets in the ratio 4:5:7. Seth got 18 more sweets than Frank. Work out the total number of sweets they shared.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning