Show that (x+1)(x+2)(x+3) can be written in the form ax^3 +bx^2 + cx + d where a,b,c,d are positive integers.

First we shall expand two of the brackets to obtain a quadratic equation and then multiply each term by the remaining bracket. The order with which we expand the brackets does not matter. Use the FOIL method to help remember how to expand brackets: First Outside Inside Last=(x+1)(x2 + 5x + 6)= x3 + 5x2 + 6x + x2 + 5x + 6 Lastly simplify the solution into the form asked for in the question:= x3 + 6x2 + 11x + 6

SW
Answered by Scott W. Maths tutor

9076 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Renee buys 5 kg of sweets to sell. She pays £10 for the sweets. Renee puts all the sweets into bags. She puts 250 g of sweets into each bag. She sells each bag of sweets for 65p. Renee sells all the bags of sweets. Work out her percentage profit.


solve the equation x^2 -5x +1 = 25


c is a positive integer. Prove that (6c^3+30c) / ( 3c^2 +15) is an even number.


How do you find the turning point of a quadratic equation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning