How fast are geostationary satellites moving?

From a Newtonian perspective, the equation for the speed of a satellite in circular orbit around the Earth at a radius r can be derived by equating centripetal acceleration to the acceleration due to gravity so that the speed v is the square root of the gravitational constant times the mass of Earth, divided by r. This v depends on the r, but the radius of an object in geostationary circular orbit around Earth can be determined by substituting 'two times pi, divided by the period' for the speed. Since the period of Earth's rotation, along with its mass are all known values, you can find the radius and plug that into your first equation to solve for the speed.

Answered by Angus L. Physics tutor

3276 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

How do Transformers work?


When the current through an ohmic conductor is 2A, the potential difference across it is 6V. What is the potential difference across the same ohmic conductor when the current is increased to 3A?


How does refraction work?


Jane drops a football from the roof onto the ground below. The ball weighs 0.8kg and the distance the ball falls is 5m. Assuming there are no external forces acting on the ball, what speed will the ball be travelling at just before it hits the ground?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences