Why is phenol more reactive than benzene?

Phenol (which is a benzene ring with one substituted carbon with a hydroxyl or alcohol group) does not require a halogen carrier to be halogenated whereas benzene itself cannot react with a halogen alone. 

What's the reason for this difference in reactvity between benzene and phenol? Let's take the bromination of phenol and benzene as examples and have a look at the electronic structure of both reactants. 

The electonic structure of benzene consists of delocalised pi-electrons above and below the ring of 6 carbon atoms with the electron density is shared throughout the ring.

Phenol has an OH group bonded to one of the carbons and this oxygen has two lone pairs in p-orbitals. Now these electrons can overlap with the electrons in the benzene ring and if we look at the molecule as a whole, the oxygen shares these electrons with the rest of the system and so, increases the electron density. This means that there is enough electron density in phenol to induce a dipole in a Br2 molecule, making it an electrophile that can then be attacked by the nucleophilic phenol. 

Benzene on the otherhand does not have sufficient electron density to induce this dipole so a strong enough electrophile must be produced using a halogen carrier like FeBrif benzene is to react at all. 

Answered by Thomas N. Chemistry tutor

34384 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Periodicity shows a fairly smooth increasing trend across a period for ionisation energy. However, between groups 2 & 3 and groups 5 & 6, the trend doesn't appear to be followed. Using your knowledge of chemistry, explain why the trend isn't followed here


Calculate the pH of a 0.0131 mol dm^-3 solution of calcium hydroxide at 10 degrees centigrade.


Describe and explain the trend in first ionisation energy down group 2 of the periodic table.


Why are Amines more basic than Amides?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences