Why is phenol more reactive than benzene?

Phenol (which is a benzene ring with one substituted carbon with a hydroxyl or alcohol group) does not require a halogen carrier to be halogenated whereas benzene itself cannot react with a halogen alone. 

What's the reason for this difference in reactvity between benzene and phenol? Let's take the bromination of phenol and benzene as examples and have a look at the electronic structure of both reactants. 

The electonic structure of benzene consists of delocalised pi-electrons above and below the ring of 6 carbon atoms with the electron density is shared throughout the ring.

Phenol has an OH group bonded to one of the carbons and this oxygen has two lone pairs in p-orbitals. Now these electrons can overlap with the electrons in the benzene ring and if we look at the molecule as a whole, the oxygen shares these electrons with the rest of the system and so, increases the electron density. This means that there is enough electron density in phenol to induce a dipole in a Br2 molecule, making it an electrophile that can then be attacked by the nucleophilic phenol. 

Benzene on the otherhand does not have sufficient electron density to induce this dipole so a strong enough electrophile must be produced using a halogen carrier like FeBrif benzene is to react at all. 

TN
Answered by Thomas N. Chemistry tutor

39718 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Acid HA has a Ka of 2.00 x 10-4mol dm-3. A solution was made by adding 15cm3 of 0.34 M NaOH to 25cm3 of 0.45M HA. Calculate the moles and the concentration of A- and HA in this solution. Using the expression for Ka calculate the pH of the solution


Give the full electron configuration for the sodium ion, Na+.


Q1. Two beakers, A and B, each contain 100.0 cm^3 of 0.0125 mol/dm^3 nitric acid. Calculate the pH of the solution formed after 50.0 cm^3 of distilled water are added to beaker A. Give your answer to 2 decimal places.


Describe how propenal, propanal and propanone can be distinguished from one another by simple chemical tests.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning