Why is phenol more reactive than benzene?

Phenol (which is a benzene ring with one substituted carbon with a hydroxyl or alcohol group) does not require a halogen carrier to be halogenated whereas benzene itself cannot react with a halogen alone. 

What's the reason for this difference in reactvity between benzene and phenol? Let's take the bromination of phenol and benzene as examples and have a look at the electronic structure of both reactants. 

The electonic structure of benzene consists of delocalised pi-electrons above and below the ring of 6 carbon atoms with the electron density is shared throughout the ring.

Phenol has an OH group bonded to one of the carbons and this oxygen has two lone pairs in p-orbitals. Now these electrons can overlap with the electrons in the benzene ring and if we look at the molecule as a whole, the oxygen shares these electrons with the rest of the system and so, increases the electron density. This means that there is enough electron density in phenol to induce a dipole in a Br2 molecule, making it an electrophile that can then be attacked by the nucleophilic phenol. 

Benzene on the otherhand does not have sufficient electron density to induce this dipole so a strong enough electrophile must be produced using a halogen carrier like FeBrif benzene is to react at all. 

TN
Answered by Thomas N. Chemistry tutor

37073 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

In terms of reaction mechanisms, what exactly is the rate-determining step?


Ethanol can be made from the reaction between ethene and water. The reaction is exothermic and occurs at a high temperature. Describe and explain the effect of raising the temperature on the rate of achievement of equilibrium and the equilibrium yield.


Given is a following reaction at equilibrium: N2(g) + 3H2(g) ⇄ 2NH3(g), ΔH < 0. What will be the effect of changing the following conditions on the system? 1. Increasing pressure. 2. Decreasing temperature. 3. Adding a catalyst. 4. Adding HCl(g).


State and explain whether NaCl and Mg can conduct electricity in both the solid and molten states.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences