Prove n^3 - n is a multiple of 3

To prove n3-n is a multiple of 3 we rely on a few simple tricks. The first is to factorise the expression.n3-n = n(n2-1)n(n2-1) = (n-1)(n)(n+1)The next trick is to realise that the series of numbers n-1, n, n+1 are consecutive. For example if n = 2:n-1 = 1n = 2n+1 = 3If you have a series of 3 consecutive numbers, clearly one of them will be a multiple of 3. Hence if; n3-n = (n-1)(n)(n+1), for all n and one of the numbers n-1, n, n+1 is a multiple of 3, then n3-n is also a multiple of 3.

Answered by Isaac H. Maths tutor

12879 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the following with respect to x: e^(10x) + ln(6x+2)


What is integration?


The curve C has equation y = x^3 - 3x^2 - 9x + 14. Find the co-ordinates and nature of each of the stationery points of C.


Find the equation for the tangent to the curve y^3 + x^3 + 3x^2 + 2y + 8 = 0 at the point (2,1)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences