Prove n^3 - n is a multiple of 3

To prove n3-n is a multiple of 3 we rely on a few simple tricks. The first is to factorise the expression.n3-n = n(n2-1)n(n2-1) = (n-1)(n)(n+1)The next trick is to realise that the series of numbers n-1, n, n+1 are consecutive. For example if n = 2:n-1 = 1n = 2n+1 = 3If you have a series of 3 consecutive numbers, clearly one of them will be a multiple of 3. Hence if; n3-n = (n-1)(n)(n+1), for all n and one of the numbers n-1, n, n+1 is a multiple of 3, then n3-n is also a multiple of 3.

IH
Answered by Isaac H. Maths tutor

14606 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can the trapezium rule be used to estimate a definite integral?


solve the equation 2cos x=3tan x, for 0°<x<360°


Express the polynomial x^3+x^2-14x-24 as a product of three linear factors.


How can I understand eigenvalues and eigenvectors?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning